Automated High-Level Synthesis of Low Power/Area Approximate Computing Circuits
نویسندگان
چکیده
Many classes of applications, especially in the domains of signal and image processing, computer vision, and machine learning, are inherently tolerant to inaccuracies in their underlying computations. This tolerance can be exploited to design approximate circuits that perform within acceptable accuracies but have much lower power consumption and smaller area footprints than their exact counterparts. In this paper, we propose a new class of automated synthesis methods for generating approximate circuits directly from behavioral-level descriptions. In contrast to previous methods that operate at the Boolean level or use custom modifications, our automated behavioral synthesis method enables a wider range of possible approximations and can operate on arbitrary designs. Our method first creates an abstract synthesis tree (AST) from the input behavioral description, and then applies variant operators to the AST using an iterative stochastic greedy approach to identify the optimal inexact designs in an efficient way. Our method is able to identify the optimal designs that represent the Pareto frontier trade-off between accuracy and power consumption. Our methodology is developed into a tool we call ABACUS, which we integrate with a standard ASIC experimental flow based on industrial tools. We validate our methods on three realistic Verilog-based benchmarks from three different domains. Our tool automatically discovers optimal designs, providing area and power savings of up to 50% while maintaining good accuracy.
منابع مشابه
Automated High-Level Generation of Low-Power Approximate Computing Circuits
Numerous application domains (e.g., signal and image processing, computer graphics, computer vision, and machine learning) are inherently error tolerant, which can be exploited to produce approximate ASIC implementations with low power consumption at the expense of negligible or small reductions in application quality. A major challenge is the need for approximate and high-level design generati...
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملHigh-Level Synthesis for Minimum-Area Low-Power Clock Gating
Clock gating is one of useful techniques to reduce the dynamic power consumption of synchronous sequential circuits. To reduce the power consumption of clock tree, previous work has shown that clock control logic should be synthesized in the high-level synthesis stage. However, previous work may suffer from a large circuit area overhead on the clock control logic. In this paper, we present an I...
متن کاملA new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کاملAnalysis of Effect of Pre-Logic Factoring on Cell Based Combinatorial Logic Synthesis
In this paper, an analysis is presented, which demonstrates the effect pre-logic factoring could have on an automated combinational logic synthesis process succeeding it. The impact of pre-logic factoring for some arbitrary combinatorial circuits synthesized within a FPGA based logic design environment has been analyzed previously. This paper explores a similar effect, but with the non-regenera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014